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Abstract

The objective of developing the Spectral Mixture Model Algorithm was to provide some intelligent
algorithm that could be utilized for spectral sensing in wideband receivers. The methodology was
discussed initially in report AFRL-RI-RS-TR-2008-266. The current report is a refinement of the technique
with the objective of presenting the concept to a broader audience.

The Spectral Mixture is a generalization of the Expectation Maximization algorithm. The algorithm
reduces the information divergence of two distributions by adjusting its parameters. The algorithm can
be applied to histogram data or sample points for signal decomposition of multimodal signal in terms of
mixture elements. The model was applied to spectral analysis with good success in the one-dimensional
case. To achieve better convergence, the algorithm may require the constraint of some of the
parameters by imposing boundary conditions or preventing changes.

This research explored some potential applications of the algorithm. These include: spectral
characterization, speech compression, deconvolution and image processing. The results are
summarized in this report.



1. Introduction

This report is divided in two parts. The first part is a theoretical discussion of the development of the
Spectral Mixture algorithm from the perspective of machine learning and the second part is a discussion
of the implementation of the method for some specific applications.

The application of interest is spectral decomposition and characterization, also referred as spectral
sensing. Given a spectral estimate, we would like to model an undetermined number of signals in terms
of the center frequency, bandwidth and power density. The signals are required to follow some
predetermined model in the frequency domain. The method resembles a Gaussian Mixture approach
with this important difference: the Gaussian Mixture Model algorithm requires statistical sample points
while the Spectral Mixture Model requires histogram data as the input.

The Spectral Mixture algorithm resembles some kind of entropy formulation. By changing the form of
the expression, one can prove that the algorithm is an iterative process that reduces the information
divergence of two parametric probability densities until the process converges to some local minima.
Under certain specific conditions, the algorithm reduces to Expectation Maximization, K-Means,
weighted K-Means and Parzen Window depending on the variable is chosen for optimization.

One of the issues of the algorithm is caused by the presence of an offset in the distribution. To
overcome this issue, one can assign fixed mixtures to model a signal offset by keeping a fixed width or
variance. This issue is cover in section 3.

The algorithm was applied to signal detection and speech compression. The speech compression
method has very low complexity and does not require the addition of voiced/unvoiced detection or
estimation of the linear prediction coefficients. The price to pay is a reduction of the quality of the
speech. The compressed speech sound hoarse, but this is typical of vocoder at a low bitrates.

The report pretends to be an introductory tutorial for those who are interested in this method. This
review would serve as baseline for future research in these methods.



2. Classification Algorithms and Metrics

Many classification and machine learning algorithms require a data set of observations, a parametric
model and optimization rules. Through an optimization process, we find the parameters that provide a
best fit for the model according to the selected rules. The result of this process is called analysis. The
analysis is usually the most computationally involved process of classification. Optimization methods
require processing many data points, calculating complex derivatives, iterating many times or evaluating
complex functions. For such reason, a metric of performance for the analysis process can be described in
terms of the number of floating point operations that are needed to find a solution.

Synthesis is the inverse of the analysis process. The synthesis simply requires evaluating the model
using certain specified parameters. Measuring the fitness of a model to a data, i.e., calculating the error
between the model and the data can be use as a metric of performance. Minimizing the error is a typical
criterion for developing optimization rules.

It is often said that the results of the analysis are as good as the model used to fit the data. If the model
is not representative of the data, then the results are questionable or perhaps wrong. Various
information criteria have been proposed such as the Akaike and Bayesian Information Criterion.
Developing a metric that measures the fitness of different models is beyond the scope of our discussion.

2.1.Mixture Models

Suppose that a given data set can be modeled as a linear combination of K density functions. A

parameter vector 6= [a,u, 02, ...] corresponds to the mixture probability a, the mean p, the variance
o? and possibly other high order moments that control the shape of the model. For simplicity, we

consider a vector with three parametersé = [a, 1, 0%] . The parametric model can be express as a
summation of mixture terms that follows a given parametric model as

K

pOI0) = > apOjlmecd) 2.
k=1

The maximum likelihood approach provides a criterion for finding the optimal parameter vector. The
optimization process finds the parameters that maximize the likelihood function of the model shown in
equation 2.2.

] K
log(p(yla,u,0)) = Z log (Z arp (V| e, Gk)> 2.2

j=1 k=1



Finding maximum likelihood solutions using equation 2.1 has several problems. The derivatives of the
expression with respect to its parameters produce complex terms with no closed form solutions. A
second problem occurs when the variance approaches zero; then the normal distribution diverges. This
is not a big problem and can be solved by adding a small non-zero element to the variance estimate. In
addition, this case is likely to happen when outliers are present. A third problem is called identifiability.
This means that K mixtures can be rearranged in K! combinations, so there are K! possible solutions.
Once again, the problem is not critical. We cannot rely on the index number that identifies a mixture
because it can change its value.

An equivalent and more convenient way to solve the maximum likelihood of a mixture is by using the
Expectation-Maximization method shown in equation 2.3:

argmax log(p(yla, 1, 0)) 2.3
)

where the equation is subject to

K
Z a, =1 2.4
k=1
2

The differentiation of log(p(Yla, U, J)) produces a common term in all the expressions for a, g and o~
The term is a posterior distribution:

akP()’lak:llk'Ulf)
i “ip(y|“i' Hi, Uiz)

p(“kﬂ#k! alfly) = 2.5

The evaluation of equation 2.5 is referred as the expectation step or E-Step.

The solution of equation 2.3 is obtained through a series of iterations that calculate the posterior
distribution and maximize the resulting expression in terms of the parameter vector. The M-Step or
maximization process consists of the reestimation of the parameter vector. In the case of the well
known Gaussian Mixture Model (GMM) algorithm, the model is given by a Gaussian density and the
optimization requires the evaluation of equations 2.6-a through 2.6-d.

]
Jk = Zp(a’k,uk,a,?lyj) 2.6-a

j=1

@ " == 2.6-b

—
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o = ]—kz p( @i e 0 |y;) 0 — 1) 2.6-d
=

In order to go from a maximum likelihood approach to the EM algorithm, we note that the maximum
likelihood algorithm provides knowledge of the mixture through the prior distribution p(ak,uk,aﬂy).
Instead of ignoring this term, we decide to include this knowledge in our advantage by reformulating
equation 2.2 such that the summation term does not appear inside the logarithm. This is desirable
because it facilitates solving the equations as we will see soon.

The algorithm can be reformulated by creating a dummy variable z. The variable z acts like a tag that
provides the index number of a given mixture. The index information is not available directly, so we call
this the missing random variable.

K
p(y.z=k;0) = Z aip(yjlzj = ;g 0f) 2.7
k=1

Some knowledge of the label z is available through p(zz i|y,ai,ui,0i2) =p(ai,ui,o'i2|y). This
knowledge is supplied into the equation 2.2 by estimating the conditional expectation of the log-
likelihood. The new expression is called the auxiliary function L. The optimization rule consists of
finding the parameter vector that maximizes the auxiliary function,

] K

]=1 k=1
conditioned to Y X_, P(Zj =k; 5) =1

y, ak,,uk,a,f). The M-Step is the maximization of the

The E-Step consists of the evaluation ofp(z =i
auxiliary function:

VsL(6,6,0)=0 29



2.2. Spectral Mixtures 1-D

The Mixture Model approach operates in a set of statistical samples and produces the parameters of a
distribution that fit a given model in an optimal sense. A similar approach was developed in project
AFRL-RI-RS-TR-2008-266 with the purpose of analyzing histograms instead of statistical samples. The
objective was to create a method for spectral sensing, i.e., a method for characterizing the frequency
spectrum of telecommunication signals.

The spectral model can be derived from the quantization of the feature space. Given a data set, its
guantized samples generate a histogram. The histogram is simply a pair of cells and sample counts. The
cell indexes will substitute the data set in the EM method. The sample count will be reflected as
exponents in the likelihood function.

First, we define continuous variable{y |y € R}, a discrete variable an arbitrary { f | f € Z}and a
quantization function Q(y) that maps y into a discrete variable f:

:{f=0 |y eRf €Z} 210

Let’s assume that finite set of statistical samples {y]-}j=1 is sorted in ascending order such thaty; <

vy for j < k. The quantized process forms a new set {Q(yj)};ﬂ. We are interested in counting the

number of repeated values in the new set. We define S as the count of samples for a quantization
index f as,

S(f) = Count{f:f = {Q()’j)}}ﬂ} 2.11

The goal is to investigate the form of the auxiliary function (equation 2.8) under quantization of the
sample space. Quantization always produces lost of information. In this case, specific information of the
missing variable z is expected to be lost for individual samples. Under quantization, all samples falling
under the same cell i must share the same index number. We designate a new variable Z to represent a
tag for group of samples within the same histogram bin. We also impose the probability function to be
identical for all samples inside a cell.

P(z=0)=P(z=1i) 212
The likelihood p(f|Z =k; 5) will be defined as an average of the probability models. This is done by

adding all likelihoods with a common quantization index f and dividing them by the number of samples
in the histogram bin.

J
- 1 -
p(flz=k;6) = mz p(f = Qlyj}lzj = k;6) 213
=1



The posterior probability p(yj|zj =k; §old) remains invariant under the transformation of equation
2.13.

awp(flz =k; éold)
YK Laxp(f|z =k 001a)

p(Z = k|f; 601q) = 2.14

Finally, let’s rewrite the auxiliary function under quantization. Each repeated samples modify the
likelihood expression by rising each term to the S(f,;,) power:

M K
.. _ 5 _ 2\SUm)
L(G, Gold) = Z P(Zm = klfm; 90161) Z lOg (p(fm: Zm = k,Q) ) 2.15
m=1 k=1

subject to the constraint YX_, P(Z]- =k; 5) =1.

It was found convenient to rename the parameter vector using variables associated with the frequency
spectrum, which in a sense; it is nothing less than a histogram. The terms mean, variance and mixture
probability will be replaced by center frequency f,, statistical bandwidth b, and power composition p
respectively. The parameter vector is rewritten as:

g = [p, f- b] 2.16

2.2.1. Maximization of the Expectation

This section covers the discussion of the maximization process for the one and two-dimensional case.
The one-dimensional case initial motivation was to analyze the frequency spectrum to characterize
signals above the noise floor. The motivation for the two-dimensional case analysis was to analyze
signals in the time-frequency domain. The analysis resulted in a rudimentary and perhaps inefficient
image detector. The results of the findings will be summarized in the present section.

Let’s now define a family of Gaussian-like density functions as,

28 =N _(f=f N} 2.17
P{7}9) br(%)ex”{ (o)

For N = 2, the distribution becomes Gaussian with mean f, and variance b2 /8. The function I'(x) is the
Gamma function. The model has been plotted for several values of N in Figure 1.
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Figure 1 Parametric model of equation 2.17 as a function of N

Maximizing the expectation results in equations 2.18-a through 2.18-d.

N (fm — fex

N
(EYANE ) =0 28

M
a > > -
57 6.602) = ) D(En = klfii Boia) )
c.ke m=1

M N
_a 5 0 — 5  — .0 _l_ N fm_fc,k _ )
ob £(6,0,4) = nZlP(Zm = k| fm; 901d)5(fm)< by (bk/2)< WE ) > =0 218b

P(Zm = klfm; Go1a) S(fin)

Y — - = 2.18-c
i=1 Zn=1 p(zn = ilfn; Hold) S(fn)

a =g
—£(0,0,19) =0 > P(Z,, =k) =
dpk

The optimal parameter vector §Opt = [popt,fCOpt, bopt] is obtained by implementing the following

steps:

Algorithm:

1. E-Step: Evaluate p(Zm = k|fm; éold)
2. M-Step: Evaluate 6 = [p, f, b] using equations 2.18-a to 2.18-c

3. Verify convergence by comparing 6 and éozd



2.2.2. Spectral Mixtures 2-D

An interesting development of the spectral mixtures is when extending the concept for the two-
dimensional case. We are going to show how quantities like as center of mass, standard deviation and
regression line arises from the maximization of our Gaussian-like model.

The parametric model used is a Clipped Gaussian distribution in two dimensions. The distribution is
controlled by a parameter N that modifies the decaying slope of the density. We also introduce a set of
affine transformations modified by the following parameters: translation, scale, shear and rotation. In
our case, shear is constrained by scale because the intention of this particular model is to characterize
modulated signals in the joint time-frequency domain.

Our 2-D model defines an affine transformation Q, a translation vector fi and a coordinate vector X. The
affine transform Q includes a shear matrix [Sh], a scale matrix [Sc] and a rotation matrix [R].

QG — @) = [ShIT[Sc]'RIT'E - @) 219

The parameters of the matrices are the angle of rotation ¢, the scale factor s, in the x coordinate and
the scale factor s,, in the y coordinate. The parameter [ is a translation vector. The specific form of the

matrices is shown in equations 2.20 through 2.22.

cos (¢) —sin(¢)

R(¢) = [sin (p) cos(¢) 2.20
Sc = [56( SO] 2.21
y

The model provides sufficient parameters for characterizing telecommunication signals in the time-
frequency domain. The shear models a parallelogram shape which is characteristic of chirp signals in the
joint time-frequency domain.

1 0
— S
Sh = [_S_Ytan () 1] 2.22

A new vector is constructed by raising each coordinate to the N power. Equation 2.23 is a non-linear
transformation.

a={QGE-@D)" 223



The resulting exponential function resembles a rectangular surface for N = 4 as shown in Figure 2.

N 1
X|z;0) = — —qT 2.24
p(%|z6) V(Q)exp{ a’q}

Figure 2 Shape of the parametric model in 2 dimensions
of equation 2.20

The parameter vector is defined in terms of these geometrical parameters as,

6 = [0, lxs Uy Sy, Sy, @] 2.25

where p is the ratio of the volume of one mixture over the entire volume.

Normalization requires integrating the whole surface. For N = 4, the volume was approximated using
equation 2.26. The volume of the distribution is a function of to the scales and the order of the
distribution N. For our purposes, N is constant so the volume can be expressed as a function of the
scaling parameters.

V() = ff exp{—q"q}dxdy ~c-sx-sy 2.26

The auxiliary function L keeps the same appearance. The variable f;, is replaced with vector X:

M K
A A — - ~ - — = S(—)m)
L(grgold) = z p(Zm = k|Xpy; Gold) 2 log (p(xm' Zm = k; 6) ¥ ) 2.27
m=0 k=1

subject to the constraint Z’,§=1 P(Zm =k; 5) = 1.



Maximizing the expectation requires finding the roots of the derivatives of the auxiliary function. The
derivatives can be found by using Mathematica or other symbolic math application.

For the translation p,, the derivatives are given by equation 2.28.

a 5 o -
WL(Q' Gold) = Z Z P(Zm = k|Xm, Ym; Qold) *S(Xm, Yim)
x
x Yy

, { o (((x — p)sec <¢>>” N ((x — 1) cos(@) + (¥ — py )cos (¢)>z”>
2.28

Sy Sy

—ln(k-sx-sy)}= 0

Some simplification can be accomplished by using N = 1 as an approximation.

_ Zx Zy p(zm = k|Xm) Ym; éold) : S(xm:ym) * X

v = — - 2.29
Zx Zy p(zm = k|Xm, Ym; gold) : S(Xm, ym)

This is an expression equivalent to the center of mass in the x coordinate. A similar expression was
found for the y coordinate.

_ Zny p(zm = k|Xm, Ym; éold) : S(xm'Ym) 'y

y = — — 2.30
Zx Zy p(zm = k|Xm, Ym; eold) : S(xm'ym)

For the scaling s,, the maximization of the auxiliary function produces a closed form solution.

B 5 1/(2N)
o = (Zx Zy p(Zm = k|Xm, Ym; Hold) : S(xm::)’m) : {21+2NN(SeC(¢))2N(x - .ux)ZN}>
* Zx Ey p(zm = k|Xm, Ym; Gold) : S(xm'y'm) 2.31

In a similar manner, the scaling sy, is given by,

¢ S 1/(2N)
S Xy 2 (Zm = K1, Y Bota) - S e, Ym) - {2242VN ((x — 1) sin(@) — (y — 1) cos(9) )}

Zx Zyp(zm = k|Xm, Ym; éold) : S(xm'Ym)

2.32

10



These expressions reduce to the standard deviation when the order of the distribution is one. In the y
coordinate, the standard deviation is calculated along the regression line of the data given by (x —

) sin(¢p) — (y—uy) cos(¢) = 0. One can argue that the standard deviation provides a rough

approximation of the scales s, and s,, during our optimization process. This approximation was verified
during simulations.

For the angle of rotation ¢, the maximization of the auxiliary function results in equation 2.33.

ZZ p(Zm = k|Xm, Ym; éold) S, Ym)
y
X

2N-1

A=2v (- B =) @ B —Po)/sPV) + ((x — mo)sec (@) tan ()}

2.33

The vectorsWH, Ww,, P and p, are vectors the principal components of the data as illustrated in Figure 3.
The data is distributed inside a parallelogram that is at a distance p — p, from the origin. The slope of
the principal component equals tan (¢p) and runs parallel to the regression line v_v’“. The dot product of

the distance vector and the principal component W, defines the regression line.

W+ (B —Po) = —sin(¢) (x — ) +cos(¢)(y —p,) = 0 234

-------I-I----
- . . ”
W, .° : a
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fmmm - o omomom
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Figure 3 Distribution of data points of the selected model:
Two principal component w; and w/ from distribution
of equation 2-20.
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The regression line approximation is verified when N = 1. The slope of the regression line becomes:

Zx Zy p(zm = k|Xm, Ym; éold) : S(xm: ym) < (x - .ux) : (y - ﬂy)
szy p(zm = k|Xm, Ym; Hold) : S(xmr Ym) : (y - .uy)

tan (¢p) = 2.35

The optimal parameter vector §opt is obtained by implementing the following steps.
Algorithm 2-D:

1. E-Step: Evaluate p(Zp = k|Xm, Yim; Bo1a)
2. M-Step: Evaluate 6 = [0, tx, Ly, Sx, Sy, ] using equations 2.25 to 2.31.

3. Verify convergence by comparing 6 and §old

2.2.3. Relationship between Spectral Mixtures and Parzen Windows

Parzen Windows is a non-parametric method used for the estimation of probability density function. In

machine learning, a non-parametric method implies that there is no control over the model. The most

common way for adjusting the parameters of a Parzen Window is by trial and error. The best estimate

comes from reducing the error between the data histogram and the model. This can be done by visual

inspection. Other approaches use neural networks to accomplish this task.

The method models discrete histogram bins by means of kernel functions. In the simplest case, it defines

a rectangular window of unit area and width h. The density p(x;) is estimated using the window

function w(x) shown in Figure 4 as blue rectangles, the number of data points x; that falls under the

window and the area (or volume) of the window.

samples inside the bin i

D) = 2.36
p(xi) total samples - area

=W (x"lll;xi) 237

K-h

p(x;) =

1 1
1f0r_§Sx<_ 238

w(x) = 2

0 otherwise
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/ p(xi)

plx)/h

T

Figure 4 Concept of Non-Parametric Parzen Windows

The window w(x) is known as the kernel. It does not need to be a rectangular window. Parzen proved
that it can take the form of equation 2.39 or other shapes as long as the following conditions are met:

f |w(x) |dx =1, 2.39

lw(x)| < o, 2.40
lim|x-w(x)|[=0. 241
X—00

It is possible for this type of kernel to converge to the original density function when h — 0 for a large
number of windows is a normalized density function:

f wlx)dx=1 242

The Spectral Mixture algorithm is also based in quantization of the sample space. This similarity between
Parzen Windows and Spectral Mixtures make one wonder if there is a relationship between both
algorithms. In the spectral mixture case, the approximate number of samples in bin x,, is given by:

M

S(x,,) = Zw (x";l;xi) 2.43

i=1

These samples modify the likelihood in the form of exponents as shown previously.

13



In the Parzen Window method, the bandwidth b; and the center frequency x; are at fixed. The
minimization process is done with respect to the parameter pp®" = P(Z,, = k). We also impose that
the number of samples and mixtures are the same (M = K). These assumptions are incorporated in
equations 2.44 and 2.46 as:

L(pnew:pold) = Z p(Zm = klxm;pold) z log(p(xmrzm = k;pnew)s(xm)) 2.44

m=1 k=1
subject to the constraint YK_, p®" = 1 and posterior:
= old ~old
= . dy _ (xm|zm = k pk )p
P(Zm = klxm; p'¢) =

1= 1p(xmlzm =1 pkld) pou 2.45

The optimal solution for p is given by equation 2.18-c:

new _ E%=1 p(zm = klxm;plgld) SCm)

Pk — - 2.46
§(=1 Z%=1 p(zn = llxn;plgld) S(xn)

Substituting equations 2.45 in 2.46 result in 2.47.

old

P (Xm|Zm = k; 07'*) R
mem — S(xy) 247

pr = 2
Z%:ls(xn) m:121:1 p(xm|zm =1 pkld)

The likelihood has the same form as the normalized window function in 2.37 as:

. S(xm)w TS ) oyt
plew — Z = 2.48
“ =15 (xn) xl) potd
M

w

The convergence of the parameter p;}®™ — py suggests that 1/M is a possible solution. This solution is

in agreement with the Parzen Window method.

— X "
Z S(xm>w k) o
. -k 2.49
P n 1S(xn) xl) pl
M

=1 llw

The sum over all p;, must be equal to one. This was our original constraint in equation 2.39, which is also
true for the equation 2.50. This shows that the spectral mixture algorithm reduces to Parzen Window
when the parameters are fixed and the parameter p;, converges to the specified value.

14



pr=—==5 4 2.50

The Parzen Window may require finding optimal estimates of the bandwidth h,,. The Spectral Mixture
approach already provides a way to readjust the bandwidth and distances between mixtures.

2.2.4. K-Means and Spectral Mixtures

The K-Means algorithm is a special case of the Expectation Maximization method for a mixture of
Gaussian densities, also known as Gaussian Mixture Models (GMM). The difference between the K-
Means and the GMM is that K-means makes a deterministic assignment of samples to a cluster (or hard
decision) while the GMM makes a probabilistic assighment or soft decision using a Gaussian distribution
instead of a rectangular window function.

Going from a soft decision to a hard decision is equivalent to fixing the variance and allowing finding the
limit as it goes to zero. The maximization of the auxiliary function 262 - L(u, iyq) is done by with
respect to the centroids p,.

(y— u )? p
02 L(W Uora) = Z p(Z = k|y; tioia) Z “ + 0% log (—k) —o%-log(o) 251
\V2m

Jim {auk 202 £(6,0,14) } 2.52

As the variance goes to zero, the conditional probability p(i = k|f; éold) converges to the unity only at
the data point that is closest to the centroid p;,.

0 fory— e # min (y — px)

: 2.53
1 fory — py = min (y — py)

lim p(z = Klyi o) = v(7 = kly) = |
i 0
The auxiliary function becomes:

M K

2. LW, o) Z

m=1k=1

= k|y)(y — uy)? + constants terms  2.54

NI»—\
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The extending K-Means to Spectral Mixtures is very simple. The distance between the samples f and the
bins f, . are weighted by the histogram count S(f). The resulting algorithm finds K centers of mass of a
histogram.

M K
20% - L(fcrfc,old) = Z Z%V(Z = k|f)S(F)(f — fer)? + constants terms ~ 2.55

Table 1 Spectral Mixture Cases

Spectral Mixture Case: Algorithm:
Case (f) =1: Expectation Maximization
Case S(f) =1,0 -0 K-Means
Case S(f) = const, f = const, g = Parzen Window
const.

2.3.Spectral Mixtures and Kullback-Leibler Divergence

As we have seen, the Spectral Mixture approach can be considered as a general case of EM, K-Means
and Parzen Window. In addition, we can observe that the auxiliary function looks somewhat similar to
some sort of entropy.

The Spectral Mixture algorithm will be modified without altering the final result. Instead of using an
arbitrary histogram, we decide to normalize S(¥,,) and expressed it as a probability density
function p(¥,,) = S(X,)/ [ S(X)dV. The normalization constant [S(X)dV and the constant

expression Y™ _ p(Zn = k|¥m; Oo1a)D Fm) Tk, log (p(Zm = k|Xp; §Old)ﬁ(3_c’m)) do not affect the

maximization process with respect to 6.

M K
L(é, éold) = z p(zm = klfm; éold)ﬁ(fm) z log (P(?_C)mlfm = k; é)p(im = k))
m=0 k=1
1 N S A 2.56
+ " (= Kl 0ota)PGon) ) 10g (p(7im = Kl Gota )P )
m=0 k=1

The resulting expression is the negative of the Kullback-Leibler divergence between distributions
4(%,26,10) = T (%17 601a)p(®) and p(%,2;6) = T p(#1Z 6)p(2).

Dy, (q(f, 2 0010) | 1 (2, 2; 5)) = —£(6,644) 257
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The Spectral Mixture algorithm minimizes the divergence of the distributions corresponding to a
selected model and the data distribution. Upon successive iterations, the probability of the data
predicted by the model approximates the true distribution.

-

Onew = arg main Dy, (q(f, Z; éold) [ p(fl Z; 5)) 2.58

The minimization process requires the correct model to achieve the following convergence:

K

Pim) = Y p(Enlim = kO = ) > pEn) 259
k=1

Other divergence formulations can be used instead of equation 2.58. The minimization of the
parametric Renyi alpha divergence [9] (equation 2.60) will be based on the log of the ratio between the
model and the data. This is a maximum likelihood formulation analogous to the equation 2.2 that
originated all this theory.

- A Y =4 p(f; Z, 5) )
(4(2.7 601a) 11 p(%,:6)) = log (q(i o)
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3. Implementation of the Spectral Mixture Algorithm

3.1.Spectral Sensing

The Spectral Mixture model algorithm was implemented in Matlab using 1-D Gaussian densities and
provided as an example. Some rules were implemented to control the convergence of the mixtures in
the M-Step. For instance, if the variance is less than a minimum value, then reset the variance to a
predetermined value.

The first case is an example of a pure Gaussian Mixture process with N = 2 in equation 2.17. Four
Gaussian mixtures were generated with noise. (See Figure 5) A total of ten mixture elements were
added and the algorithm iterated 20 times.

Analysis

1
] 20 40 B0 80 100 120

x10° Initialization

Amplitude

] 20 40 B0 80 100 120
Frequency

Figure 5 Analysis of a histogram of Gaussian mixtures

Convergence to the desired values was achieved in the first 5 iterations approximately as shown in

Figure 6.

18



Mixtures and Criginal

Amplitude

] 20 40 =in]
Freguency

Figure 6 Convergence of the Gaussian mixtures

The overall contribution of all the mixtures has an average squared error of 0.009. The synthesis shown
in Figure 7 resembles the original distribution. One of the explored ideas was the design of a simple
vocoder that encodes the values of the mean and variances and then synthesizes the speech. This will

be discussed in section 3.2.

Synthesis

Figure 7 Synthesis of the Spectral mixtures

The spectral mixtures work for clipped Gaussian distributions generated from equation 2.17. In this
case, the feasibility of using the algorithm for spectral sensing applications was explored. For these
experiments, a polyphase filter was used to provide a spectral average of generic MPSK and FPSK
signals. Figure 8 shows two MPSK signals under SNR below 15 dB.
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Figure 8 Synthesis of the frequency spectrum

The algorithm achieves convergence when one of the mixtures is constrained from moving and
expanding: fixed center frequency and fixed bandwidth. The trick forces the mixture to converge to the
noise floor of the spectrum while the other mixtures converge to the signals above the noise floor.

An attempt to implement a two-dimensional Spectral Mixture revealed that the process is slow,
computationally intensive and does not converge so easily to the desired solutions.

20 20
40 40
B0 B0
20 40  BOD B0 20 40 B0 &0

Figure 9 Convergence of a 2-dimension Spectral Mixture, 45dB

Figure 9 shows two BPSK signals switching from on and off states in a short time period. The vertical axis
represents frequency and the horizontal one represents time. The SNR of the signals is above 45 dB.
The figure to the left shows the centroids after convergence. The right-side figure shows the product of
the posterior distribution p(Zm = k|Xpm; §Old) with the spectral distribution S(f). The posterior
distributions act as a window that block the undesired signals and only allow the portion of the
distribution S(f) that contributes to a mixture.
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Under more severe SNR and without the usage of a fixed mixture that converges to the noise floor, the
method breaks. The centroids are attracted by the areas of high density. In some cases, a mixture can
converge to large of portions of the noise floor as shown in Figure 10. The addition of the fixed mixture
shows very little improvement.

Figure 10 Convergence of a 2-dimension Spectral Mixture, 6dB

3.2.Simple Vocoder

Vocoders are a set of coders specifically designed for voice. Basically there are three types of speech
coding: waveform coding (such as ADPCM), source or parametric coders (vocoders) and hybrid coders
which are a combinations of the first two. One important difference among these approaches is the
quality and achievable bitrate. The hybrid coders have the best quality and performance, but also they
are the ones with the highest complexity.

Vocoders rely on speech synthesis and psychoacoustic models for speech synthesis. The vocoders rely
on analysis and synthesis that produce speech that is perceptually acceptable. The synthetic speech
does not have to necessary match the original signal. The synthetic speech is usually as good as the
model. The model usually separates a speech signal into voiced or periodic speech and unvoiced
speech. The signals are also separated in the excitation and the vocal track response. The problem of
characterizing the vocal track is related to linear prediction. The linear prediction problem is equivalent
to a system identification problem and it can be proved that the optimal linear prediction coefficients
that minimize the error are exactly the coefficients of autoregressive model that generates speech. [2]

The Multiband Excitation Vocoder is an “analysis by synthesis” method which means that the synthetic
speech is compared with the original to get an error signal. [8] The method minimizes the error by
adjusting the spectral envelope. The model also ignores the phases of the spectral response as shown in
equation 3-1. The MBE defines a criterion error to be minimized. The error is just the difference
between the spectral power of the original S(w) and the synthetic signal S,,(w) which is the product of
the spectral response given the vocal track H,, (w) and the excitation E,, (w).
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1 T
Error = ﬂf |S(w)|—|Hy (@)||Ey(@)||?dew 3.1
-7

The Spectral Mixture provides a way to analyze and synthesize the spectral response |S(w)| of the
speech. By using a nearly perfect reconstruction filter bank and Spectral Mixtures we can encode and
decode speech as shown in Figure 11. The approach assumes that frequency, bandwidth and intensity
of spectral mixtures can be used to encode speech. The parameters can be used to reconstruct the
synthesized version for approximating the spectrum.

—>
—>

Figure 11 Diagram of the Proposed Vocoder Implementation

Instead of estimating the vocal track and the excitation, the signal is represented as a set of three
parameter vectors: the center frequency, bandwidth and power of the spectral response. Synthesized
speech using Gaussian distribution results in Gaussian pulses in a time with a width that is inversely
proportional to the bandwidth. As an alternative to Gaussian pulses, we can synthesize an approximate
the time response with sinc functions shown in equation 3.2.

sinc(mb(f — fo))
nf

p(f|z; 5) = 3.2

The filter banks were implemented in Matlab®. Figure 12 shows the decomposition and synthesis of a
256-channel filterbank. The filter uses a Kaiser window with 30 dB of attenuation and transition
bandwidth of 5 percent. These parameters were chosen to preserve the reconstructed signal from
distortion.

The advantage of this approach is the little complexity in the implementation. The scheme does not
need voice/unvoiced detection.
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Figure 12 Original and Decoded Speech

Figure 13 shows the approximation of the voice and unvoiced speech. The algorithm provides a crude
approximation in both cases.

The algorithm is implemented using matrices. The computation of the posterior distribution in the E-
Step requires O(N * M = I) floating point operations, where N is the number of data points, M is the
number of mixtures and I is the number of iterations used. In this particular example the number of
floating points operations is approximately O(N * M = [) = 256 * 10 * 40 = 102400.

The achieved compression is as follows: The speech audio file is 57KB sampled at 8kHz. The speech
separated into its frequency components using a 256-channel filter bank. The spectral mixture
approach uses 15 Gaussian Mixtures and produces three outputs: center frequency, bandwidth and
power composition. The data is saved using the following fields:

1 byte: center frequency, the data range is (0-255)

1 byte: bandwidth, the data range is (0-255)

1 byte: power composition, the data range is (0-100)

8 bytes: total power per window of data, the data range can currently take floating point
numbers of double precision. This value is necessary because the spectral mixture

i A

algorithm only takes normalized distributions. The value could be reduced to 4 bytes.
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The 57 KB file produces is compressed to a 4.27 KB file. The compression ratio is 12.12. The file plays for
3 seconds. The original bit rate is 57K * 8 /3 = 152 kbps. The compressed audio rate is 4.27K * 8/3 =11
kbps.

For having a simple architecture the proposed vocoder appears to have a fair performance with some
hoarse and buzzing sound. Of course, there are state of the art vocoders that work much better at
lower rates, for example, the MBE vocoder works at 4.15 kbps and the MELP works at 2.4 kbps. [10]
Nevertheless, these vocoders have sophisticated processing and it is not the intention of this project to
beat the current state of the art.

3.3.0ther Applications

3.3.1. Blind Deconvolution

One of the original goals was to develop a deconvolution model that would provide estimates of the
periodicity of a cyclostationary process.

The model used was a distribution shown in equation 3.3. The equation describes a square pulse
modulated by a cyclostationary signal with an offset. The cyclostationary signal is created with a raised
cosine filter.

( cos (#) sinc (7;1—31) T )
—17N(y)N% _4}’252 yiﬁ
T? 3.3
s
k1+a BSIn(ZB) Zﬁ}

The idea was to model a cyclostationary signal as distribution with parameters 8, L and T. First, a raised
cosine function is created. The response adds an offset. The signal is modulated with a square pulse.
(Figure 13) The separation between the impulses was chosen to be the same as the distance between
the peak of the filter response and the null. This condition is required for interpolating data points
between impulses.

10/ — & —
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Figure 13 Cyclostationary signal and square pulse
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The cyclostationary signal is transformed into a mix of density functions. (Figure 15) The approach has
problems that were found to be impossible to overcome. The mixing of mixtures creates a signal that is
extremely difficult to separate. For instance, the proximity of two distributions can cause the algorithm
to converge to a local maximum instead of the absolute maximum. This is a weakness of all the
algorithms based on Expectation Maximization. Second and probably the most critical consideration is
given by equation 2-57. The algorithm is an iterative process that reduces the divergence between the
red trace and the blue trace in Figure 15; however, there is no guarantee that the minimum divergence
produces the optimal parameters for this distribution. The idea was abandoned due to these two

difficulties.

Figure 14 Mixtures for deconvolution and signal with offset
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Figure 15 Synthesis of a cyclostationary signal with offset
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3.3.2. Image Detection

An image can be represented as a mixture of densities. So one natural question would be whether the
Spectral Mixture approach can use as an image detector.

The development is not so different from the development of the affine transform model shown in
equations 2.19 through 2.20. The development produces factors that depend on the gradients. This is
interesting because gradients are used in image processing for shape detection. Other than a
mathematical curiosity, the scheme fails due to the presence of multiple local maxima and the number
of degrees of freedom, i.e., the dimension of the parameter vector. This idea was abandoned due to
these two difficulties.

3.3.3. ABC Process

The Adjustable Bandwidth Concept (ABC) is a methodology developed by [7] that can be applied for the
detection of wideband signals. The method process creates averages and high frequency versions
(wavelet decomposition) in the frequency spectrum. This research explored the possibility of combining
both approaches.

The ABC algorithm performs much better with another algorithm called Connective Components. The
latter algorithm works very efficiently with the binary data produced by the ABC method. We discarded
using the Spectral Mixture for this application due to the computational efficiency of the Connective
Component.
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4. Conclusions

In report AFRL-RI-RS-TR-2008-266, it was noticed that raising the likelihood to an integer power S(f)
was equivalent to adding S(f) samples with the same value. This is true in both: the maximum
likelihood approach and the Expectation Maximization method. This fact was use to develop an
inference method for histograms. The method was referred as Spectral Mixtures.

In this report, the theory of Maximum Likelihood and Expectation Maximization methods was reviewed.
For developing the Expectation Maximization method, we took advantage of the posterior density from
equation 2.5 to produce an average over a modified likelihood given by equation 2.7. The maximization
process resulted in the Expectation Maximization algorithm.

The development of the Spectral Mixture Model considered the quantization of the sample space in
histogram bins as shown in equation 2.11. There is a variable associated with this quantization: this is
the histogram count S(f). This quantity was constrained to the set of positive integers, but this
constraint can be relaxed to any positive real number. The quantity S(f) can be expressed as a
probability distribution, which makes possible to reformulate the Spectral Mixture Model approach as a
minimization of the divergence of two distributions. The new algorithm takes the form of equation 2.58

where @ is the parameter vector

N

= gm0 1558)

and q(%, z; §Old) and p(%, z; 5) are given by:
427 60ia) = ) (#1760t} (D)
p(%26) = ZP(J?IZ: 0)p (2.
Pim) = SGi)/ [ SV

The Spectral Mixture algorithm was applied to the problem of spectral sensing of communication signals
and speech signals. In both cases, the amplitude of the spectrum is considered while the angle is
neglected. The method works fine for cases where no or little noise floor is present. In order to
overcome this difficulty, one of the mixtures is forced to have constant variance. The variance is made
large enough, so the mixture converges to the noise floor as shown in Figure 8. Clipped Gaussian
densities were used for simplification purposes. The log-likelihood of such distributions is reduced to a
polynomial expression and the maximization process becomes less complex. Sometimes, we get closed
form solutions, but this is not always the case.
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The Spectral Mixture was applied to deconvolution and image processing. It was found that the Spectral
Mixture approach inherits all the weaknesses of the Expectation Maximization. One weakness is the
resolution of two mixtures with a small separation. The algorithm tends interpret both mixtures as one
mixture. The other problem is the convergence to a local maximum. Sometimes, the local maximum
solution does not represent the best approximation. The third problem is the degrees of freedom.
Adding more degrees of freedom, i.e., adding more parameters makes the problem more difficult to
solve due to the increase of complexity.

As a final conclusion, equation 4.1 is a generalization of the Expectation Maximization algorithm. Under
special cases, the algorithm is reduced to K-Mean and Parzen window.

28



5. References

[1] S. Bernadin, Wavelet Processing for Pitch Estimation, Proceedings of the 38" Southeastern
Symposium on System Theory. |IEEE, 2006

[2] C. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2006.
[3] W. Chu, Speech Coding Algorithms, Wiley & Sons, 2003

[4] J. Deller et Al., Discrete-Time Processing of Speech Signals, IEEE Press, 2000T.

[5] R. Duda, Pattern Classification, 2nd Edition, John Wiley and Sons, 2001

[6] T. Dutoit, M. Terran, Applied Signal Processing, Springer, New Jersey 2009

[7] Galleani, L. Cohen, A. Noga, A Time-Frequency Approach to the Adjustable Bandwidth Concept,
Elsevier, Digital Signal Processing, Vol. 16, Issue 5, September 2006

[8] D. Griffin, J. Lim, Multiband Excitation Vocoder, IEEE Transactions on Acoustic, Speech and Signal
Processing, Vol 36, 1988

[9] A. Hero, et Al, Alpha-Divergence for Classification, Indexing and Retrieval, Communication and Signal
processing Laboratory, Technical Report CSPL-328, May 2001.

[10] Z. Li, M. Drew, Fundamentals of Multimedia, Prentice Hall, NJ 2004

[11] M. Milosavljevic et Al., Robust LPC Parameter Estimation in Standard CELP 4800 b/s Speech Coder,
IEEE TENCON - Digital Signal Processing, 1996

[11] T. Moon, The Expectation Maximization Algorithm, IEEE Signal Processing Magazine; Vol 13, No. 6,
November 1996, pg. 47-64.

[13] E. Parzen, On Estimation of a Probability Density Function and Mode, Ann. Math. Stat. 33, pp. 1065.
[14] S. Theodoridis, K. Koutroumbas; Pattern Recognition 3rd Edition, Elsevier, 2006

[15] A. Vega-Irizarry, Automated Spectral Survey Techniques for Blind Demodulation/ Modulation
Classification, AFRL-RI-RS-TR-2008-266, October 2008

[16] S. Vaseghi, Multimedia Signal Processing

29





